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Polarization dynamics of the fundamental vector soliton of isotropic Kerr media
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We characterize fully the polarization dynamics of the fundamental vector soliton of isotropic Kerr materials
by measuring the Stokes parameters of an elliptically polarized self-trapped optical beam propagating in a slab
planar waveguide. Our experiment clearly shows that this two-component spatial vector soliton exhibits both
the so-called ellipse rotation and curved-shape ellipticity that are due to the self-induced nonlinear birefrin-
gence between the two components of the vector soliton. The polarization of the vector soliton is accurately
determined both in the transverse and longitudinal directions and comparisons with numerical simulations
based on two coupled nonlinear Schrodinger equations provide an excellent quantitative agreement. Spatiotem-
poral numerical simulations that take into account the finite pulse duration of the experimental input optical
beam must, however, be used to match rigorously the measured state of polarization of the vector soliton.
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I. INTRODUCTION

Since the pioneering experimental work of Maker et al. in
1964 [1], the dynamical evolution of the polarization state of
light in nonlinear media has been the subject of extensive
basic and applied research. This has led to the discovery of
new nonlinear phenomena such as polarization bound states
and vector solitary waves [2-4]. New instability regimes
were also found such as polarization, modulation, or
symmetry-breaking instabilities [5-12]. Most of these non-
linear polarization dynamics have been theoretically mod-
eled by a set of coupled nonlinear Schrodinger equations
(CNLSE). These equations were first investigated for bire-
fringent nonlinear media in the (1+1)D propagation geom-
etry. In that case, stationary solutions have been demon-
strated to exist in the form of polarization bound states
counterbalancing the linear birefringence, and leading to the
so-called vector soliton [3,4]. Polarization and modulation
instabilities were also reported in the small and high birefrin-
gence regime of optical waveguides [5,8,11,13-21]. For in-
stance, the domain of existence of modulation instability
and, consequently, of vector solitons is extended in the nor-
mal dispersion regime of birefringent optical fibers because
of cross-phase modulation [6,7,10,19,22]. Other studies have
focused on stationary [23,24] or periodically evolving solu-
tions [25-27]. We must note that most theoretical and experi-
mental investigations have been performed in birefringent
media in contrast with Maker et al.’s [1] initial work which
was concerned with isotropic materials and for which very
few studies have been conducted [28,29]. Interestingly, how-
ever, in addition to the well-known linearly and circularly
polarized solitons, isotropic media also support elliptically
polarized fundamental vector solitons (EPVS) [30]. This sta-
tionary solution exists because of the incoherent coupling
between its two circularly polarized components in a way
akin to the Manakov vector soliton which was experimen-
tally reported in a birefringent AlGaAs planar waveguide in
1996 [31]. The EPVS differs, however, in several respects
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from the Manakov soliton. As mentioned in Ref. [31], the
Manakov soliton exists even in the presence of linear bire-
fringence because the incoherent coupling between its two
linearly polarized components is due to the requirement that
the strength of self-phase modulation equals that of cross-
phase modulation. On the contrary, the EPVS exists for ar-
bitrary cross-phase modulation strength but only in nonbire-
fringent media. Moreover, in a well-chosen rotating frame,
the Manakov soliton can be described by a single evolution
equation while there exists no such reference frame for the
EPVS of isotropic media. In Ref. [32] we reported the first
observation of a fundamental elliptically polarized vector
soliton. This vector soliton was observed in the spatial do-
main in a Kerr carbon disulfide (CS,) liquid slab planar
waveguide but only partial experimental evidence was re-
ported, namely the curved ellipticity factor and the polariza-
tion rotation. In the current work, we provide a full experi-
mental characterization of the polarization dynamics of the
EPVS by measuring input and output Stokes parameters in
the transverse direction. With this technique, we are able to
measure the complete evolution of the polarization state on
the Poincaré sphere. In addition to the so-called ellipse rota-
tion, we clearly show that the EPVS exhibits a nonuniform
ellipticity profile, as predicted theoretically [30]. The polar-
ization rotation and ellipticity curvature of the vector soliton
are accurately measured and compared with numerical simu-
lations of the two coupled nonlinear Schrodinger equations.
In particular, we show that the finite pulse duration of the
experimental input optical beam must be carefully taken into
account as it has a strong impact on the transverse polariza-
tion of the vector soliton, mainly because the pulse wings
experience less self-focusing and more diffraction than the
peak of the pulse. As a result, the polarization state dynamics
of the vector soliton is more complex than for the case of a
pure continuous-wave field. We then present spatiotemporal
numerical simulations that are consistent with this explana-
tion and that are in excellent agreement with polarization
measurements. This paper is organized as follows. In Sec. II,
we present the theory of vector nonlinear propagation in iso-
tropic conditions and the polarization representation. Nu-
merical simulations of the vector soliton and its unique po-
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larization dynamics are investigated numerically in Sec. III.
Section IV is devoted to the experimental evidence of the
vector soliton and its complete polarization characterization.
Finally, in Sec. V we draw our conclusions.

II. THEORY
A. Nonlinear Schriodinger equations

Scalar propagation in a single-mode planar Kerr wave-
guide is modeled by the usual (1+ 1)D nonlinear Schrodinger
(NLS) equation which governs the propagation of linearly
polarized solitons in the steady-state regime. For vector non-
linear propagation, similar NLS equations are used for each
polarization component with additional coupling terms. As-
suming a lossless and dispersionless nonlinear medium, the
polarization evolution along the waveguide (z direction) can
be modeled by two coupled NLS equations that read [33]

JE, i PE,
g 2k, o +iAlIE,S + (1 - B)|E,PIE,
+BEE} exp(2iAkz)},
JE i FE,
= i TAIEL+ (1= BEPIE,
g
+ BE2E} exp(~ 2iAkz)}, (1)

where x is the spatial coordinate along the unguided trans-
verse direction of the waveguide. E,, E, are the transverse
electric (TE) and transverse magnetic (TM) orthogonal lin-
early polarized components of the electric field, respectively,
while k, and ky are the wave vectors, and Ak=ky—kx is the
group-velocity mismatch due to the intrinsic linear birefrin-
gence. y=2mn,/\, is the nonlinear coefficient with n,=3.5
X 1078 m? W~! (see, e.g., Ref. [34]) the nonlinear refractive
index in CS, and A, the wavelength in vacuum. B
= Xayyr! Xxowe TEPrEsents the polarization susceptibility ratio.
As the Kerr nonlinearity of CS, mainly relies on the molecu-
lar reorientation effect in the subnanosecond regime, B
=3/4 [35]. Terms on the right-hand side of Egs. (2) stand for
diffraction, self-phase modulation (SPM), cross-phase modu-
lation (XPM), and four-wave mixing (FWM), respectively.
FWM is a coherent coupling process which can lead to
strong energy exchange between E, and E, depending on the
magnitude of Ak. In isotropic or low-birefringence media for
which Ak=0, the energy transfer can be very efficient, thus
leading to nonlinear effects such as polarization instability,
whereas in highly birefringent media, no energy exchange
occurs efficiently.

In isotropic media, k,=k,=k and Egs. (2) can be rewritten
in a more convenient way in the basis of circular polariza-
tions:

U i FU
—=——+i(1-B)|U*+ 1 +B)|V|U,
Py 2szﬂy[( )|U[*+ (1+B)|V|*]
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where U,V=(E,+iE,)/ V2 are the right-handed and the left-
handed circularly polarized components of the electric field,
respectively. In this basis the field components in Egs. (2) are
incoherently coupled, i.e., no energy exchange can occur be-
tween U and V. With B=3/4, Eqgs. (2) show that we can
expect strong nonlinear circular birefringence as XPM is
seven times stronger than SPM, resulting in significant po-
larization rotation.

B. Polarization dynamics

As mentioned before, an isotropic medium is a necessary
condition for the experimental observation of the fundamen-
tal EPVS. Nonetheless, it is interesting to understand first the
mutual influence of linear and nonlinear birefringence of the
guiding structure on the nonlinear polarization dynamics.
This evolution along the propagation direction is modeled by
Egs. (2) and can be examined with the following Stokes
parameters [36]:

so(x,2) = |EJ* + |E) ] = [51(x,2)* + 55(x,2)* + 55(x,2) ]2,

s1(x,2) = |EJ* - |E,

s

$5(x,2) =2 Re(E,E}),

s5(x,2) =2 Im(EXE;), (3)

which describe the spatially resolved polarization state of the
field across the beam in the transverse direction (x) for vari-
ous positions (z) along the waveguide. In terms of circularly
polarized components, the Stokes parameters can be rewrit-
ten as

sole.2) = U+ VP,

s51(x,2) =2 Re(UV™),
55(x,2) =2 Im(UV™),

s3(6.2) = |[UP = [V]%. (4)

We also define the Stokes parameter’s integral equation, as in
Ref. [27]:

+00
So.1.25(2) = f $0.1.23(x,2)dx, (5)

which is a measure of the global polarization state of the
beam at various positions along the waveguide. Of course,
these integrated Stokes parameters imply a loss of coherence
when the polarization is not constant along the integrated
transverse direction. This means that the beam can appear as
being partially polarized with Sf+S§+S§ < S% which is one of
the interests of using integrated Stokes parameters, as we
will see below. Figure 1 shows the equivalence between the
two common polarization representations (polarization el-
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FIG. 1. Commonly used polarization representations: polariza-
tion ellipse and Stokes parameters on the Poincaré sphere.

lipse and Stokes parameters on the Poincaré sphere). The
and & parameters correspond to the orientation of the polar-
ization ellipse and to the ellipticity angle, respectively, and
read as

1 b
0(x,z) == arctan[ M} , (6a)
2 S (x, Z)
1 b
e(x,z) == arcsin[ $3(0,2) } ) (6b)
2 So(X,Z)
We also define the normalized ellipticity factor as
UPr=|v]*> s X,z
=AM S0D_G6e, )

U+ V] sp(x.2)

q=0 corresponds to linear polarization while g=+1 is asso-
ciated with right-handed and left-handed circular polariza-
tion, respectively.

Figure 2(a)-2(d) illustrate some polarization trajectories
on the Poincaré sphere obtained from numerical integration
of Egs. (2) for different values of linear birefringence. These
trajectories represent the global polarization evolution of a
light beam during the propagation over a long distance of
7L, where Lp=2.27w’n,/\ stands for the diffraction length.
w is the full width at half maximum (FWHM) of the beam
while n, is the linear refractive index of the material (the
factor of 2.27 in the definition of L, arises from the use of
the FWHM rather than the 1/e full width). We chose such a
long propagation distance to make the different polarization
behaviors clearly recognizable. In the absence of nonlinear-
ity, Fig. 2(a) shows that the polarization trajectory evolves in
a plane perpendicular to the S axis. The polarization state
regularly rotates around the S; axis independently of the ini-
tial polarization state. The invariance of the S; parameter
with z is directly related to the absence of energy exchange
between E, and E| [see Egs. (3)]. When nonlinearity enters
into play, various trajectories can be observed. For instance,
in nonbirefringent media, Fig. 2(b) shows that the polariza-
tion evolves in a plane perpendicular to the S5 axis, and that
the polarization state regularly rotates around the S5 axis in-
dependently of the initial polarization state. In this case, the
invariance of the integrated Stokes parameter Ss(z) results
from the absence of energy exchange between U and V dur-
ing propagation [see Egs. (4)]. Therefore the nonlinearly in-
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FIG. 2. Typical polarization evolution for 7L, propagation of
the integrated Stokes parameters on the Poincaré sphere. (a) Linear
evolution in birefringent media (beat length of L=11Lp), (b) non-
linear evolution in isotropic media, (c) nonlinear evolution in bire-
fringent media (beat length of L=11Lp): two examples in solid and
dotted lines for two different starting points, and (d) nonlinear evo-
lution in quasi-isotropic media (beat length of L=110Lp,): idem.

duced birefringence leads to the rotation of the polarization
ellipse, i.e., to the variation of the # parameter. Note that the
conservation of S5(z) does not rule out variation of the non-
integrated Stokes parameter s3(x,z) along the transverse di-
mension due to the ellipticity variation, as we will see there-
after. When linear and nonlinear birefringence are present
simultaneously, the polarization trajectories exhibit a more
complex behavior [see Fig. 2(c)]. On the one hand, none of
the integrated Stokes parameters remain constant during the
propagation. On the other hand, polarization trajectories
strongly depend on the initial polarization state, as shown in
Fig. 2(c) where two trajectories with different starting points
are plotted in solid and dotted lines. More details about this
case can be found in Refs. [26,27,37]. Finally, when linear
birefringence is at least one order of magnitude smaller than
nonlinear birefringence [Fig. 2(d)], the polarization trajecto-
ries are close to that of Fig. 2(b). As long as the propagation
distance remains small, the influence of the initial condition
is strongly reduced compared to the previous case. As a re-
sult, the S3(z) parameter is roughly constant and the medium
behaves like an isotropic one.

III. NUMERICAL SIMULATIONS

From a numerical point of view, the input field can be
described easily in the spatial domain by assuming a constant
continuous-wave field in the time domain. However, in most
spatial soliton experiments, high-power short pulsed laser
beams have been used so far, thus resulting in the diffraction
of the pulse wings. In the same way, we can expect a strong
influence of the finite pulse duration on the polarization dy-
namics of a spatial EPVS, as the pulse wings will experience
different polarization rotation than the pulse center. This is
the reason we will take into account in following the finite
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FIG. 3. The elliptically polarized fundamental vector soliton en-
velopes U(x) (solid line) and V(x) (dashed lines), and the corre-
sponding ellipticity distribution ¢g(x) (dotted line).

pulse duration of the input field. As we will see, the com-
parison between both input conditions (cw or pulsed) will
allow us to well interpret the experimental polarization mea-
surements.

A. Spatial profiles
1. Exact solution

Figure 3 shows the exact EPVS solution of Egs. (2) in an
isotropic medium [30]. As can be seen, the transverse pro-
files of the U and V components have a hyperbolic-secant
shape, and the polarization ellipticity factor is nonuniform
across the beam and exhibits a dip at the center (dotted line)
that depends on the U/V input ratio [30]. As the EPVS is the
exact and stable solution, these transverse profiles do not
change during propagation, i.e., are independent of z. The
instantaneous Stokes parameters of the field do, however,
vary along the beam. To get a better insight into the longitu-
dinal evolution of the transverse polarization profile, the po-
larization dynamics of the EPVS is plotted on the Poincaré
sphere in Fig. 4. Each arc of a circle on the sphere corre-
sponds to the Stokes parameters of the soliton in the trans-
verse dimension x at a fixed distance z. More precisely, the
length of each arc Ax corresponds to twice the FWHM of the
beam. The total propagation distance z,,,, corresponds to
7L, whereas the propagation distance Az between two arcs
is equal to z,,,,/20. For each segment, the bottom point (low-
est value of s3) corresponds to the peak of the soliton and the
top point (highest value of s3) corresponds to the wings at
one FWHM distance of the maximum. This particular repre-

FIG. 4. Poincaré sphere representation of the evolution of the
Stokes parameters of an exact EPVS over a propagation distance of
7Lp. The dashed line represents the integrated Stokes parameter
evolution.
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FIG. 5. Theoretical results: (a), (c), and (e): E, (solid line) and
E, (dashed line) intensity profiles for, respectively, the input beam
(FWHM=49 um), the output beam at low power (FWHM
>400 um), and the output beam in soliton regime (FWHM
=49 um). (b), (d), and (f): corresponding U (solid line), V (dashed
line), and ¢ (dotted line) profiles. Note that in the soliton regime,
FWHM(U)=53 um is different from FWHM(V)=49 um. Propaga-
tion distance=7Lp.

sentation is very useful because one arc of a circle in Fig. 4
reveals the transverse polarization variation only due to el-
lipticity curvature [Eq. (6b)], while the length of the arc rep-
resents the maximum ellipticity variation at the beam center.

Moreover, Fig. 4 also shows that the 6(x,z) parameter is
conserved in the transverse dimension x at any fixed distance

z. This soliton property follows from the relation 6(x,z)

Ap(x,z)
$2 , which can be deduced from Eq. (6a), and from the

constancy of the phase difference between the two compo-
nents of the vector soliton, i.e., Ap(x,z)=¢y(x,z)— @p(x,2)
=constant.

As the s3(x,z) curvature is conserved during propagation,
the polarization trajectories can be viewed as a set of arcs of
circles on the Poincaré sphere. A linear evolution of the ori-
entation of the polarization ellipse € is also clearly observ-
able. It corresponds to the rotation of the polarization ellipse
due to the nonlinear birefringence, as shown in Fig. 2(b).
Finally, Fig. 4 also depicts in dashed line the trajectory of the
integrated Stokes parameters and confirms the invariance of
S5 and the rotation of the polarization ellipse. It is important
to state that the integrated Stokes parameters plotted in Fig. 4
are not on the surface of the Poincaré sphere but slightly
inside, as S7+55+53<SZ. This is the result of loss of coher-
ence of integrated Stokes parameters, as discussed previ-
ously.

2. Hyperbolic-secant input beam

If we now assume two hyperbolic-secant transverse input
profiles for the two components U and V of the vector soliton
but with a uniform ellipticity across the beam, we may ex-
pect a nonlinear reshaping of the g parameter during the
EPVS generation. Figure 5 illustrates the results of such nu-
merical simulations performed both in the linear and in the
soliton regimes for a long propagation distance of 7L,
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FIG. 6. Contour plot showing the evolution along 7Lp of (a) the
U component, (b) the V component, (c) the vector soliton, and (d)
the ellipticity factor g in the soliton regime.

Figures 5(a) and 5(b) show Ey, Ey and U,V input hyper-
bolic transverse intensity profiles (solid and dashed curves),
respectively, with the uniform initial ¢ profile (dotted) also
shown in (b). Figures 5(c) and 5(d) represent the same pro-
files after linear propagation. We can see a large amount of
diffraction but no polarization change, which is expected
since the medium is isotropic. Indeed, the g profile plotted as
a dotted line remains flat. On the other hand, Figs. 5(e) and
5(f) depict the situation when the soliton regime is reached.
We can clearly observe some energy exchange between the
two linear components Ey and Ey of the vector soliton re-
sulting from polarization rotation, but not between the circu-
lar ones. Moreover, the ¢ profile is no more flat and exhibits
a curved-shape profile with a dip at the beam center, as ex-
pected from the exact EPVS solution [30].

To clearly identify soliton propagation, we then numeri-
cally calculated the longitudinal evolution of the U and V
components as well as the total field intensity in the soliton
regime [see the contour plots in Figs. 6(a)-6(c), respec-
tively]. The nonlinear regime is characterized by the invari-
ant propagation of the total vector soliton. No significant
evolution of the most intense component U can be seen in
Fig. 6(a), whereas an initial reshaping of V is noticeable in
Fig. 6(b). As the V component is slightly less intense than the
U component, it is strongly guided and reshaped by XPM
with U. Figure 6(d) also illustrates as a contour plot the
evolution of the polarization ellipticity factor ¢ in the soliton
regime. As the input beam does not correspond to a stable
soliton solution, the polarization ellipticity ¢ changes during
propagation. This longitudinal evolution is due to spatial re-
shaping of the U and V components towards the stable solu-
tion. Once the polarization ellipticity ¢ has decreased at the
center of the spatial soliton, it remains constant all along the
propagation. The EPVS is therefore a stable soliton attractor
and is self-stabilized.

Figure 7 represents the Stokes parameters evolution dur-
ing the EPVS generation. The input polarization is character-
ized by a single point as the input ellipticity is constant
across the beam [Fig. 5(b)]. During propagation, two param-
eters drastically change. First, the ellipticity € acquires a cur-
vature characterized by a length increase of the arcs of
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FIG. 7. Polarization evolution of Stokes parameters on the
Poincaré sphere for 7Lp of propagation for a spatial hyperbolic-
secant shaped input beam. The dotted line represents the integrated
Stokes parameter.

circles. Second, the ellipse orientation parameter 6 increases
during the propagation due to the nonlinear birefringence.
Additionally, during the initial propagation steps, the arcs of
circles exhibit an inflection. This means that the # angle also
depends on the transverse dimension. This behavior is due to
the transient reshaping regime of the U and V components
before the EPVS generation. As a result, the 6 variation is
not identical for the top and the wings of the optical beam.
When the EPVS is fully generated, however, the arcs of
circles tend to be vertical and parallel, meaning that the 6
angle is now flat in the transverse direction, as it is the case
in Fig. 4. We can conclude from Fig. 7 that there is a tran-
sient regime characterized by a change of the ellipticity and
of the polarization ellipse orientation. Regarding the evolu-
tion of the integrated Stokes parameters (dotted line), its tra-
jectory is similar to the one described in Fig. 4, except that
the starting point is on the surface of the Poincaré sphere and
ends inside it.

B. Spatiotemporal case: The experimental configuration

To model the experimental conditions as perfectly as pos-
sible, both the input spatial and temporal Gaussian profiles of
the light pulses must be considered. Here we make the as-
sumption that the spatial evolution is decoupled from the
temporal one [38] by considering the pulses used experimen-
tally (600 ps) as quasimonochromatic. This enables us to ne-
glect material or waveguide dispersion. The time dependence
of the Kerr nonlinearity is also neglected as the response
time in CS, (2 ps) is smaller than the pulse duration. With
these assumptions, we can use Egs. (2) with an additional
time dimension decoupled from the spatial one. Physically, it
is obvious that different temporal slices of the pulse will
evolve nonlinearly according to their power. For instance,
the trailing and leading edges of the pulse are only affected
by diffraction because of their low power. They widen spa-
tially and do not undergo polarization ellipticity change. On
the contrary, the pulse peak undergoes self-focusing and a
strong polarization evolution. The time-averaged field will
therefore be significantly different from what is observed in
the continuous-wave regime.

1. Time-integrated spatial profiles

The results of our spatiotemporal numerical simulations
are shown in Fig. 8 in the same manner as in Fig. 5 but using
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FIG. 8. Numerical results: (a), (c) and (e): E, (solid line) and E,
(dashed line) intensity profiles for, respectively, the input beam
[FWHM=49 pum], the output beam at low power [FWHM
=100 um] and the output beam in the soliton regime [FWHM
=49 um]. (b), (d) and (f): corresponding U (solid line), V (dashed
line) and ¢ (dotted line) profiles. Note that in the soliton regime,
FWHM(U)=53 um is different from FWHM(V)=49 pum. Param-
eters are k=1.94 X 10’ m~!, y=4.1 X 10" m.W~!, maximum input
intensity /=4.5 X 10" W.m™2, propagation distance=3 cm.

time-integrated spatial profiles. Here we assume a Gaussian
input beam as the initial condition. The propagation distance
corresponds to the experimental waveguide length of 3 cm,
which is close to 2L,. This leads to an output beam in the
linear diffraction regime [Figs. 8(c) and 8(d)] which is twice
as large as the input one [Figs. 8(a) and 8(b)]. Figures 8(e)
and 8(f) show the beam profiles after soliton propagation.
The first evidence of vector soliton propagation is the hyper-
bolic secant reshaping of the two components. Again, the
energy exchange between the two linear components Ey and
Ey is clearly observable even though it is reduced in com-
parison with that observed in Fig. 5 because of the shorter
propagation distance. The most noticeable discrepancy, how-
ever, is that the gap in the g parameter is not as marked as in
the pure spatial case shown in Fig. 5(f). This emphasizes the
influence of the pulse wings that can be considered as non-
solitonic radiations (NSR). The g parameter is thus averaged
and lowered by the spatiotemporal nature of the laser pulses.
The polarization rotation at the center of the beam can be
extracted through the ratio between E, and E| in Fig. 8:
Ag""=86,,—6,~0.17.

2. Output Stokes parameters

To get access to the entire polarization state of the beam,
we calculated the transverse polarization parameters of the
fields using Egs. (4), (6a), and (6b). Figures 9(a) and 9(b)
show, respectively, the normalized Stokes parameters
[s,(x,0)/sy, i=1,2,3] and the corresponding ellipticity angle
£(x,0) and ellipse orientation angle 6(x,0), all at the wave-
guide input face. As can be seen, these parameters drastically
change after soliton propagation. Both the results of purely
spatial [Figs. 9(c) and 9(d)] and spatiotemporal [Figs. 9(e)
and 9(f)] simulations clearly show that every point of the
transverse profile has a different polarization. The curvature
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FIG. 9. Transverse polarization parameters of the vector soliton.
(a,b) input beam, (c,d) after 3 cm soliton propagation with
continuous-wave input, and (e,f) same as (c,d) but for a finite pulse
duration.

of ¢ is directly related to the g factor curvature [see Egs. (7)]
and corresponds to the expected EPVS solution. In addition,
the comparison of Figs. 9(d) and 9(f) reveals that the use of
a pulsed input beam induces a significant decrease of the
amplitude of the e curve, as previously reported for the g
parameter in Fig. 5(f). Note that, for the pure spatial case
shown in Fig. 9(d), 6 presents a flat profile at the center. This
is consistent with the vector soliton properties since the el-
lipse orientation angle is the same for all points in the trans-
verse spatial dimension. However, this is not the case for the
pulsed configuration of Fig. 9(f), for which the 6 parameter
at a given position x corresponds to the average of the 6
values for all the temporal slices of the pulse weighted by
their intensity. Therefore this ensemble averaging suppresses
the flat @ characteristics of the EPVS.

3. Longitudinal and transverse polarization dynamics

Figure 10(a) illustrates the transverse polarization states
for different temporal slices of the vector soliton when the

(b) $3

FIG. 10. (a) Evolution of the polarization state of several tem-
poral slices of the spatial EPVS after propagation over 7Lp. The
bold line represents the resulting time-integrated polarization state
(this segment is inside the sphere). (b) Corresponding longitudinal
polarization evolution of Stokes parameters (these segments pro-
gressively sink inside the sphere). The dotted line represents the
integrated Stokes parameter evolution (idem).
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FIG. 11. Experimental setup. L X1, LX2: cylindrical lenses
used to shape the soliton in the transverse direction (f,
=300 mm, f;,,=150 mm). Li: injection lens (f;;=80 mm), W: Wol-
laston biprism.

propagation distance is equal to 7Lp. The Stokes parameters
of the pulse wings correspond to the short segment lines on
the right, while the segments on the left correspond to the
peak of the pulse. It is clear from this figure that each tem-
poral slice has different ellipticity parameters and a different
polarization orientation. The bold line is the time-integration
of the previous Stokes parameters weighted by their respec-
tive intensities. As can be seen, the segment line is no more
vertical but exhibits a strong tilt, due to the change of the 6
parameter in the transverse dimension, as previously dis-
cussed from Fig. 9(f). Second, as for a partially polarized
light, the dispersion of the polarization state of the different
temporal parts of the pulse yields an averaged state inside the
sphere (bold line), which strongly differs from the previous
results which did not take into account the finite pulse dura-
tion.

The evolution of the Stokes parameters during the propa-
gation of the spatiotemporal field up to a propagation dis-
tance of 7L is represented in Fig. 10(b). The last segment
line then corresponds to the bold line of Fig. 10(a). It is
significant that the polarization state evolution during propa-
gation differs from the purely spatial case (Fig. 7) and that
the generation of the EPVS does not correspond to vertical
arcs of circles anymore.

IV. EXPERIMENT

The experiment, schematically sketched in Fig. 11, is per-
formed in a 3 or 7 cm-long CS, liquid planar slab wave-
guide. The step-index waveguide is made of a 15-um-thick
CS, layer sandwiched between two SKS glass plates, whose
index difference is An=0.04 [29]. A beat length of
L=1.8 m=106L; much longer than the waveguide length
was measured, which ensures a quasi-isotropic condition re-
quired to generate and maintain the EPVS. As a pump laser,
we used a compact passively Q-switched microchip Nd:YAG
laser emitting 600 ps Gaussian pulses at a repetition rate of
6.7 kHz and at a wavelength of 532 nm (mean power is
30 mW). The high power stability (<1% rms) as well as the
smooth circular TEM0O beam profile of the laser allow one
to generate the spatial soliton with an excellent transverse
stability and, therefore to measure accurately its polarization
state.

The elliptic polarization state of the input beam was ad-
justed by means of a quarter-wave plate. A couple of cylin-
drical lenses (Lx1, Lx2) are inserted to adjust the horizontal
size x of the beam (soliton width) without changing the ver-
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FIG. 12. Experimental results: (a), (c), and (e): E, (solid line)
and E, (dashed line) intensity profiles of, respectively, the input
beam (FWHM=49 um), the output beam at low power (FWHM
=100 um), and the output beam in soliton regime (FWHM
=51 um). (b), (d), and (f): intensity profiles for left-handed U (solid
line) and right-handed V (dashed line) circular polarizations and

ellipticity factor ¢ (dotted line). Note that in soliton regime,
FWHM(U)=53 um is different from FWHM(V)=45 pm.

tical size y. At the waveguide’s output, a second quarter-
wave plate and a Wollaston biprism (W) were used to extract
either the (E,,E,) linearly polarized components or the
(U,V) circularly polarized components depending on the
wave-plate and prism orientations. First, to get access to the
global polarization state, we directly observe the energy ratio
between the linearly polarized components. Second, the el-
lipticity factor across the transverse beam profile is measured
by means of the circularly polarized components [see Eq.
(7), with time-averaged U, V components].

A. Time-integrated spatial profiles

The experimental results are detailed in Fig. 12. Figures
12(a), 12(c), and 12(e) illustrate the E, and E, profiles at the
waveguide’s input and output in linear and soliton regimes,
respectively, while Figs. 12(b), 12(d), and 12(f) exhibit the
U, V, and g (dotted line) intensity profiles in the same con-
ditions. The first quarter-wave plate is tuned so that the input
ellipticity factor is 0.29 and is of course constant all across
the transverse beam profile, as shown by the dotted line of
Fig. 12(b). This particular value (¢=0.29) has been chosen
through numerical simulations to get a maximum decrease in
the ¢ parameter at the beam center. For this ellipticity degree,
one can see in Fig. 12(a) that the power of the E, polariza-
tion is much lower than the E, one.

Figures 12(c) and 12(d) show the same profiles after lin-
ear propagation within the waveguide. We can see clear dif-
fraction of the beam whose FWHM is twofold compared to
the input one. The ellipticity profile is still flat across the
beam and no polarization rotation occurs. Note that no sig-
nificant energy exchange between the E, and E, components
is observable, which confirms the isotropic assumption.

The soliton regime is reached for a mean pump power of
4 mW (maximum intensity of 4.4X10'' Wm™) and the
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FIG. 13. Experimentally measured transverse polarization pa-
rameters in the input beam. (a) Stokes parameters s; (solid line), s,
(long-dashed line), and s3 (dotted line), normalized by s,. (b) Ellip-
ticity angle & (long-dashed line) and ellipse orientation angle 6
(solid line).

output spatial profiles are presented in Figs. 12(e) and 12(f).
They show clear reshaping of the input Gaussian beams into
hyperbolic secant-shaped profiles for both linear and circular
polarizations. In addition, the E, polarization shown in Fig.
12(c) has much more energy than in the linear regime, mean-
ing a global polarization rotation of the soliton. Note that in
planar waveguide with linear birefringence, this TM compo-
nent is unstable and leads to the so-called polarization insta-
bility [11,37,39]. Figure 12(f) demonstrates that the polariza-
tion state is no longer uniform across the entire beam and the
ellipticity factor exhibits a difference of Ag=0.23 between
the center and the wings of the beam, as predicted by our
numerical simulations. We also measured FWHMs of the U
and V beams of 53 and 45 um, respectively. As a matter of
fact, a nonlinear reshaping of the U and V circular polariza-
tions of the beam occurs during propagation without energy
exchange between both components, leading to different
widths for the U and V beams.

B. Stokes parameters measurements

In order to get access to the entire polarization state of the
soliton, we used the setup described in Fig. 11 under differ-
ent configurations. As explained in Ref. [36], the polarization
parameters can be deduced by measuring six intensities ob-
tained by changing the orientation of the quarter-wave plate
and the Wollaston biprism. The input polarization is depicted
in Fig. 13. We have plotted (a) the Stokes parameters of the
input beam and (b) the ellipse angles. We can observe that all
polarization parameters are constant, as in Figs. 9(a) and
9(b). Note that the polarization parameters measured outside
of the optical beam are strongly noisy because of the very
low power.

Figure 14 illustrates the same parameters measured at the
output end of the waveguide in the low power regime. We
can see that all the transverse polarization parameters remain
flat. The values of these parameters are, however, a bit modi-
fied. This is also noticeable through the small difference in
the g value between Figs. 12(b) and 12(d). This difference
could be interpreted as the action of the residual linear bire-
fringence of the waveguide. But the thickness of the wave-
guide was not narrow enough to explain this phenomenon,
and the fact that the parameter s is also modified confirms
that the linear birefringence does not come from the wave-
guide. Actually this small change in the polarization state has
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FIG. 14. Experimentally measured transverse polarization pa-
rameters in the linear output beam. (a) Stokes parameters s; (solid
line), s, (long-dashed line), and s5 (dotted line), normalized by s.
(b) Ellipticity angle & (long-dashed line) and ellipse orientation
angle 6 (solid line).

been identified as resulting from a low stress-induced bire-
fringence of some optical elements in the setup, and mainly
the windows of the CS, tank. Thus the assumption of an
isotropic propagation in the waveguide is still valuable.

Figures 15(a) and 15(b) display the polarization param-
eters measured in the nonlinear soliton regime after 3 and
7 cm propagation lengths, respectively. Direct comparison
between the experimental data and spatiotemporal numerical
simulations taken from Figs. 9(e) and 9(f) shows a fairly
good agreement, highlighting the significant impact of finite
pulse duration on the vector spatial soliton generation. As
expected, the spatial output profiles of these parameters are
not flat anymore in comparison to the input ones. This com-
parison confirms that the temporal finite width of the input
beam must be taken into account in order to well understand
the experimental polarization measurements. For example,
the experimental polarization axis rotation of the top of the
beam is A#*"=4,,—0;,~0.157, in quite good agreement
with the numerically calculated one.

To complete our experimental investigation, we per-
formed additional measurements of the state of polarization
over a longer propagation length of 7 cm, meaning more
than 4Lj,. The results are plotted in Fig. 15(b). For such
longer propagation, it is significant that we achieved a very
good agreement between simulations and experiments. It is

1

02
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(peJ 1) sajbue 2 pue g

Bt 2 /'-(b) = 02
TN BT = =
1 0
50 0 50 -50 0 50

Transverse spatial coordinate (um)

FIG. 15. Experimentally measured transverse polarization pa-
rameters of the EPVS after (a) 3 cm and (b) 7 cm propagation. Left
column: Stokes parameters s; (solid line), s, (long-dashed line), and
s3 (dotted line), normalized by s,. Right column: ellipticity angle &
(long-dashed line) and ellipse orientation angle 6 (solid line). In
gray are plotted the numerical results of Figs. 9(e) and 9(f).
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FIG. 16. Polarization dynamics of the vector soliton on the
Poincaré sphere for (a) 3 cm and (b) 7 cm, respectively. A: starting
point, B: output polarization after 3 cm, and C: after 7 cm. Gray
areas and dotted lines are numerical simulations. Solid lines repre-
sent experimental measurements. Note that the output states (B,C)
are slightly inside the sphere.

important to note that the measurements for 7 cm propaga-
tion have been made with a lower input power than for 3 cm,
to prevent from stimulated Raman scattering. Consequently,
we can measure a lower A@ for a 7 cm length and this results
in a 70 um wide beam at the waveguide’s output.

1. Longitudinal and transverse polarization dynamics

In Figs. 16(a) and 16(b) are projected, on the Poincaré
sphere, the polarization dynamics during the EPVS genera-
tion for 3 and 7 cm lengths, respectively. The starting point
A is also plotted. The corresponding simulated trajectories
are shown in gray and the final state is shown by a dotted
line. This representation confirms the good qualitative agree-
ment between our experimental measurements depicted in
solid lines and the theoretical expectations. We can see both
the longitudinal ellipse rotation and the transverse ellipticity

PHYSICAL REVIEW E 75, 016611 (2007)

curvature of the elliptically polarized fundamental vector
soliton. We also observe the transverse ellipse rotation varia-
tion only due to the time integration and characterized by a
tilt in the line segments.

V. CONCLUSION

In conclusion, we have carried out a complete experimen-
tal and numerical characterization of the fundamental ellip-
tically polarized vector soliton of isotropic Kerr media. This
was achieved in the spatial domain in a slab planar wave-
guide with the help of an original polarization-measurement
setup. Our observations have revealed its typical polarization
evolution, in particular, the continuous ellipse rotation of the
vector soliton during propagation and its curved-shape ellip-
ticity profile, which is due to cross-phase modulation be-
tween the two circularly polarized components of the soliton.
We have additionally demonstrated through spatiotemporal
numerical simulations that the finite pulse duration of the
optical beam has a significant influence on the observed
transverse polarization evolution of the spatial vector soliton,
leading to a whole complex polarization dynamics. With this
model, we obtained a very good agreement with experimen-
tal measurements of the polarization evolution of the vector
spatial soliton, showing that the finite pulse duration in spa-
tial soliton generation must be carefully taken into account.
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